ストリゴラクトンの生合成経路の 解明と応用

神戸大学大学院農学研究科 若林 孝俊 杉本 幸裕

はじめに

ストリゴラクトン (Strigolactone; SL) は、地球規模で食糧生産を阻害 する根寄生雑草の種子発芽刺激物質と して同定された化合物である。その 後,多くの陸上植物と共生するアーバ スキュラー菌根菌の菌糸分岐を誘導す る根圏シグナルや、植物の枝分かれを 抑制する植物ホルモンとして機能する ことが示されて以来,植物科学分野で 最も注目を集める化合物群の一つであ る。SL はカロテノイドを前駆体とし て合成されることが知られていたが, 近年, 重要な生合成中間体やそれらの 生合成遺伝子が発見され, SL 生合成 への理解は急速に進展している。本稿 では、SL 生合成についてのこれまで の研究と、SL 生合成に着目した根寄 生雑草防除について解説したい。

1. ストリゴラクトンとは

SL は, ハマウツボ科に属するスト ライガ (Striga spp.) およびオロバン キ (Orobanche spp.) やフェリパンキ (Phelipanche spp.) などの根寄生雑 草種子の発芽刺激物質として同定さ れた一連の構造類縁体の総称である。 SL 研究の歴史は古く, 1966 年にワ タ (Gossypium hirsutum) の根滲出物 から strigol (図 -1) が単離されたこ とに始まる (Cook et al. 1966)。ワ タはストライガの宿主ではなかった が, その後, ストライガやオロバンキ

図-1 典型的ストリゴラクトンの構造

の宿主植物の根滲出物からも類似した 構造をもつ化合物が同定され、発芽刺 激物質としての役割が認知された。な ぜ植物が自身に不利益となる根寄生雑 草の発芽刺激物質を生産・分泌するの かについては長年にわたり謎であった が、2005年に、SL が、多くの陸上植 物と共生し,植物の栄養状態を改善す るアーバスキュラー菌根菌の菌糸分岐 を誘導するブランチングファクターで あることが示された (Akiyama et al. 2015)。すなわち根寄生雑草は、植物 がアーバスキュラー菌根菌との共生促 進のために分泌する SL を, 宿主が近 傍にいることを検出するためのシグナ ルとして巧みに利用している。さらに, 2008年にはSLは植物の枝分かれを 抑制する内生の植物ホルモン様の活性 を有することが見出された (Gomez-Roldan et al. 2008; Umehara et al. 2008)。このように SL は植物の生長

のみならず,アレロケミカルとして根 圏で周囲の生物にも作用する極めて多 機能な化合物である。

Strigol に代表される研究の初期か ら知られてきた SL は, 六員環 (A 環) と五員環 (B環) およびラクトン (C 環)からなる三環性の母核(ABC 環) にメチルブテノライド(D環)がエノー ルエーテルを介して結合した基本骨 格を有している (図-1)。この基本骨 格を有する SL は、今日、典型的 SL と呼ばれる。典型的 SL には、C 環の 立体配置が α 配置と β 配置のものが 存在し, それぞれ orobanchol-type, strigol-type と分類されている(図 -1)。さらに、A 環やB 環への様々な 化学修飾によって構造多様性がもたら されている。近年では、ABC 環構造 はもたないが D 環を有する新奇な SL が多数報告されており、これらは前者 と区別して非典型的 SL と呼ばれる。

図-2 典型的ストリゴラクトン生合成経路の概略図

た生合成中間体が合成されることが示 された (Alder et al. 2012; Seto et al. 2014) (図-2)。さらに CL は、シロ イヌナズナ (Arabidopsis thaliana) の 枝分かれ過剰変異体 maxl の原因遺伝 子がコードするシトクロム P450の CYP711Aや、イネの同サブファミ $\eta - \kappa \downarrow \eta$, carlactonoic acid (CLA) に変換されることが明らかになっ た (Abe et al. 2014; Zhang et al. 2014)。このCLからCLAへの変換は、 さまざまな植物の CYP711A サブファ ミリーの共通の機能であることが示さ れており、CLやCLAがSL 生合成の 中間体となることが明らかとなってい る (Yonevama et al. 2018)。

(2) CLA より下流の生合成経路

イネの CYP711A サブファミリー は、CL から CLA への変換という共通 機能を有するだけでなく典型的 SL の 生合成にも関与する。同サブファミ リーのうち、Os900 / OsCYP711A2 は CL から CLA を経由して、典型的 SL の一つである 4-deoxyorobanchol

(4DO) までの変換を触媒し, Os1400 / OsCYP711A3 lt, 4DO の 4 位 炭 素 を 水 酸 化 し orobanchol への変換を触媒する (Zhang et al. 2014)。イネの他に、シダ植物の一 つであるイヌカタヒバ (Selaginella moellendorffii) Ø SmCYP711A17v1 および SmCYP711A17v3 が CL から 4DO までの変換を、トウモロコシ (Zea mays) の ZmCYP711A18 が 4DO か ら orobanchol への変換を触媒するこ とが明らかになっている (Yoneyama et al. 2018)。植物種により CYP711A サブファミリーの触媒活性に違いがあ ることから、同サブファミリーの機能 には多様性があると考えられている。

シロイヌナズナでは、非典型的 SL として CLA のメチルエステル体であ る methyl carlactonoate (MeCLA) の存在が報告されている (Abe *et al.* 2014)。MeCLA は CL や CLA と は 異なり、試験管内で SL 受容体タンパ ク質である D14 との相互作用が認め られており、MeCLA がシロイヌナズ ナにおいて枝分かれ抑制ホルモンの一

2. ストリゴラクトン生合成 経路

(1) 生合成中間体, carlactone および carlactonoic acid

植物ホルモンとしての機能が発見さ れる以前から、SL はカロテノイドに 由来する化合物であることが示唆され ていた。2008年に、枝分かれ過剰変 異体の解析から,カロテノイド酸化開 裂酵素(CAROTENOID CLEAVAGE DIOXIGENASE; CCD) の CCD7 や CCD8 遺伝子が欠損した変異体では、 SLがほとんど生産されないことが 明らかにされた。さらに、これらの 変異体に合成 SLを投与すると、過 剰な枝分かれが同復することが示さ れた (Gomez-Roldan et al. 2008; Umehara et al. 2008)。これらの研 究から、根圏シグナルとして知られて いた SL が、植物地上部の枝分かれを 抑制する機能も有することが明らかに なった。この発見を契機に、生合成経 路の解明が飛躍的に進展し、β-カロ テンから SL の基本骨格の形成に関わ る一連の生合成遺伝子が同定されて きた。すなわち、イネ (Oryza sativa) の枝分かれ過剰変異体の一つ, d27の 原因遺伝子から見いだされた鉄キレー ト型タンパク質 D27 が、all-trans-β - カロテンを 9-cis- β - カロテンへ異 性化し, それを基質として CCD7 と CCD8による連続的な酸化開裂によ り, carlactone (CL) と名付けられ つとして機能することが示唆されている (Abe *et al*. 2014)。

3. 双子葉植物の典型的スト リゴラクトン生合成に関与 する CYP722C サブファ ミリーの発見

(1) Orobanchol 生合成

イネの CYP711A サブファミリー が BC 環形成を伴う典型的 SL の合成 を触媒したことから,他の植物種にお いても同サブファミリーがこの反応を 担うと想定された。しかし,種子植物 で CL や CLA から典型的 SL への合成 を触媒する同サブファミリーはイネ以 外では同定されていない。したがって, CYP711A サブファミリー以外に,典 型的 SL 生合成に関与する植物界に広く 存在する酵素が存在すると考えられた。

筆者らは、イネと同様に orobanchol を生産するいくつかの植物(マメ科 のササゲ (Vigna unguiculata), アカ クローバー,エンドウ,ナス科のア カピーマン)において,植物体に投 与した CLA が orobanchol へと変 換される一方で、4DOの投与では orobanchol が生成されないことを見 いだした (Iseki et al. 2018; Ueno et al. 2018)。すなわち、これらの植物 種には,4DO を経由せず CLA から直 接 orobanchol を合成する生合成経路 が備わっていることが示唆された。サ サゲにおいてシトクロム P450 の阻害 剤によって, CLA から orobanchol への変換が阻害されたことから、シ

トクロム P450 がこの変換に関与する と考えられた。そこで、候補遺伝子 の探索のため、SL 生産量が異なるい くつかの条件で栽培したササゲの根 の RNA-seq データを用いた遺伝子共 発現解析を実施した。既知の SL 生合 成遺伝子と共発現する機能未知の遺伝 子として VuCYP722C を候補遺伝子と し、その組換え酵素による酵素反応試 験を行った。その結果, VuCYP722C は CLA を 基質 として, orobanchol および C 環の立体配置が orobanchol とは逆向きのジアステレオマー, ent-2'-epi-orobanchol をほぼ1:1の比 で生成することを見いだした。さら に、酵素反応生成物には 18-hydroxy CLAと考えられる化合物も含まれ ていた (Wakabayashi *et al.* 2019)。 一方,投与実験の結果と矛盾なく, VuCYP722C は 4DO から orobanchol への変換を触媒しなかった。次に、ト マト (Solanum lycopersicum) ゲノム 中に見いだされる本遺伝子のホモログ である SICYP722C について解析した 結果, SICYP722C は既知 SL 生合成遺 伝子と同様にリン欠乏条件下で発現 量が増加し、組換え酵素はササゲの VuCYP722C と同様の活性を示した (Wakabayashi *et al.* 2019)

さらに、トマトにおいて CRISPR/ Cas9 法によるゲノム編集で *SICYP722C* 遺伝子をノックアウトした植物体 (*SICYP722C*-KO体)を作出し、SL 生産への影響を調べた。その結果、 *SICYP722C*-KO体の水耕液中には orobanchol が検出されず、代わって CLA の蓄積が確認された。これらの ことから, CLA を直接 orobanchol へ変換する SICYP722C の機能が証明 された (Wakabayashi ら 2019)(図 -2)。一方,酵素反応試験で見られた 生成物の *ent-2'-epi*-orobanchol につ いては,ササゲやトマトからは検出 されない。このことから,筆者らは, VuCYP722C および SICYP722C と 協調して働き,orobanchol のみを環 化生成物とする因子が存在するのでは ないかと考えている。

(2) 5-deoxystrigol 生合成

CYP722C サブファミリーは, 双 子葉植物に広く保存されたシトクロ ムP450であり, strigol-typeのSLを 生産する植物もこれを有する。筆者ら は、同サブファミリーが strigol-type SLの生合成にも関与しているのでは ないかと考え、5-deoxystrigol (5DS) を生産するワタ (G. arboreum) の GaCYP722Cの酵素機能を解析した。 組み換え酵素を用いた酵素反応試験の 結果, GaCYP722CはCLAを基質と して 5DS への変換を触媒し、生成物 に 4DO は検出されなかった。すなわ ち、GaCYP722Cは、VuCYP722Cや SICYP722Cとは異なり、立体選択的 なBC環形成を触媒する(Wakabayashi et al. 2020) (図-2)。また、ワタ以 外にも、5DSを生産するミヤコグサ (Lotus japonicus) において、5DS 欠 損の dsd 変異体が見いだされ、その 原因遺伝子が LjCYP722C であること が明らかにされている (Mori et al.

図 -3 トマトにおける CYP722C 欠損体の表現型 (A) *P. aegyptiaca* に対する発芽誘導活性 (B) 地上部表現型

2020)。

以上のことから,同サブファミリー は C 環の立体配置に関わらず,双子 葉植物の典型的 SL の生合成に関与す る鍵酵素であると考えられる。

4. 生合成経路に着目した 根寄生雑草防除

典型的 SL 生合成の制御は、根寄 生雑草の有効な防除戦略となり得る。 その最たる例が、ソルガムにおける ストライガ抵抗性品種 SRN39 であ る。SRN39 はストライガに対する発 芽刺激物質低生産性品種として選抜 された (Hess et al. 1992)。2017 年 に、この品種では、硫酸転移酵素ド メインをもつタンパク質をコードす る LOW GERMINATION STIMULANT 1 (LGS1) 遺伝子に変異が生じており、 生産される主要な SL が 5DS から C 環の立体配置が異なる orobanchol へ と変化していることが明らかになっ た (Gobena et al. 2017)。ストライ ガに対する発芽刺激活性は5DSより orobancholの方が低いため(Nomura *et al.* 2013), SRN39 では SL プロファ イルの変化によって、ストライガに対 する発芽刺激活性が低下し抵抗性が付 与されたと考えられる。一方,ソルガ ムにおける典型的 SL 生合成酵素や, LGS1 の機能と BC 環立体制御機構と の関係は不明であり,今後の解明すべ き問題である。

ソルガムの LGS1 と並んで、筆者ら が見いだした典型的 SL 生合成に関与 する CYP722C サブファミリーもま た,根寄生雑草抵抗性作物の育種に向 けた有用なターゲットであると考えら れる。トマトの SICYP722C-KO 体の 水耕液中からは、先述の orobanchol や orobanchol 代謝物と考えられる典 型的 SL が検出されない。この水耕液 を根寄生雑草種子に対する発芽試験に 供したところ、ストライガやトマトに 農業的被害を及ぼす P. aegyptiaca の 発芽率が大幅に低下した(図-3A)。 一方, 興味深いことに SICYP722C-KO 体の地上部枝分かれ表現型は野生 型と比較して顕著な違いは認められな かった (Wakabayashi et al. 2019) (図 -3B)。このことから、トマトの枝分 かれ制御には orobanchol を含む典型 的 SL は必須でないと考えられる。そ こで筆者らは、作物に典型的 SL を作 らせないという根寄生雑草の防除戦略 を考案している。CYP722C サブファ ミリーの触媒によって典型的 SL が合

成される植物では,この遺伝子を欠損 させることで,地上部の形態を維持し たまま根寄生雑草に対する抵抗性を付 与できる可能性が高いと考えている。 今後,実際に抵抗性がどれほど付与さ れるか,作物としての形質や,根圏環 境への影響について調査することで, 新たな防除戦略としての有効性を実証 していきたい。

終わりに

SL 生合成研究は、最近の10年間 で急速に発展してきた。しかし、典型 的 SLの BC 環制御機構や、より複雑 に合成されると考えられる非典型的 SLの生合成機構など、未だ不明な点 が多い。また、現在までに、40種類 程度の SL が単離・構造決定されてい る一方で、植物がなぜこのような多様 な SL を生産・分泌しているかの理由 や、個々の化合物の生理機能の多くは 未解明である。特に、枝分かれ抑制ホ ルモンとしての機能を担う化合物の同 定は今後の SL 研究の大きな課題であ る。今後これらの問題の解明による本 分野のさらなる進展と、SLの農業へ の利用技術の確立を期待したい。

引用

- Abe, S. *et al.* 2014. Carlactone is converted to carlactonoic acid by MAX1 in *Arabidopsis* and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. U.S.A. 111, 18084–18089.
- Akiyama, K. *et al.* 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824– 827.
- Alder, A. *et al.* 2012. The path from β -carotene to carlactone, a strigolactonelike plant hormone. Science 335, 1348–1351.
- Cook, CE. *et al.* 1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189–1190.
- Gobena, D. *et al.* 2017. Mutation in sorghum *LOW GERMINATION STIMULANT l* alters strigolactones and causes Striga resistance. Proc. Natl. Acad. Sci. U.S.A. 114, 4471–4476.
- Gomez-Roldan, V. et al. 2008. Strigolactone

inhibition of shoot branching. Nature 455, 189–194.

- Hess, DE. *et al.* 1992. Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry 31, 493–497.
- Iseki, M., *et al.*, 2018. Evidence for speciesdependent biosynthetic pathways for converting carlactone to strigolactones in plants. J. Exp. Bot. 69, 2305–2318.
- Mori, N. *et al.* 2020. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus. Planta 251, 40.
- Nomura, S. *et al.* 2013. Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep. 32, 829–838.
- Seto, Y. *et al.* 2014 Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. U.S.A. 111, 1640–1645.
- Ueno, K. *et al.* 2018. Bioconversion of 5-deoxystrigol stereoisomers to

monohydroxylated strigolactones by plants. J. Pestic. Sci. 43, 198–206.

- Umehara, M. *et al.* 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200.
- Wakabayashi, T. *et al.* 2019. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci. Adv. 5, eaax9067.
- Wakabayashi, T. *et al.* 2020. CYP722C from *Gossypium arboreum* catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta 251, 97.
- Yoneyama, K. *et al.* 2018. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol. 218, 1522–1533.
- Zhang, Y. *et al.* 2014. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10, 1028–1033.